
Witte

Recommender system: Using singular value
decomposition as a matrix factorization approach
Robin Witte

Introduction
The task of a recommender system is to recommend
items, that fit the user’s taste. The approach, that
makes use of only user activities of the past, is termed
collaborative filtering. Given a not fully specified user-
item ratings Matrix, a collaborative filtering algorithm
estimates robustly all missing entries. This project re-
port describes a collaborative filtering algorithm, that
uses singular value decomposition (SVD) as a form of
matrix factorization.

Matrix factorization
In the basic matrix factorization approach, the m× n
ratings matrix R is approximatly factorized into an
m× k matrix U and an n× k matrix V :

R ≈ UV T (1)

In an intuitive way, the columns of U represent the
affinities of the users for k different concepts and the
columns of V the affinities of the items for the same
k concepts. Thus each rating rui in R can be approxi-
matly expressed as follows:

rui ≈ r̂ui =

K∑
k=1

(uuk · vik) (2)

The matrix factorization can be performed by a trun-
cated SVD of rank k � min{m,n}, which is given as:

R ≈ QkΣkP
T
k (3)

This solution is the best rank-K approximation of R
with respect to the root mean squared error (RMSE).
To achieve the matrix factorization described above,
the matrices U and V are defined as follows:

U = QkΣk

V = Pk

(4)

Problem Definition
In practice most of the users rate only a small subset
of the entire set of items, so we are only given a small
sample of ratings T = {(u1, i1, r1), (u2, i2, r2), ..., (ut, it, rt)}
and the matrix R is not fully specified. Thus the SVD
can not be calculated in a regular way. To solve this
problem, Simon Funk introduced an algorithm, that

uses a gradient descent to calculate the SVD [1]. For
this method the error is defined by:

εui = rui − r̂ui = rui −
K∑

k=1

(uuk · vik) (5)

As described in [2] minimizing the sum of squared er-
ror (SSE) minimizes the RMSE. Hence the convex op-
timization problem is defined as:

(U∗, V ∗) = argmin
U∈Rm×k

V ∈Rn×k

∑
(u,i)∈T

ε2ui

= argmin
U∈Rm×k

V ∈Rn×k

∑
(u,i)∈T

(
rui −

K∑
k=1

(uuk · vik)

)2 (6)

By taking the partial derivatives with respect to uuk
and vik we get update rules for the parameters (details
in [3]):

uuk+ = −λ ∂

∂uuk
ε2ui = λ(εuivik)

vik+ = −λ ∂

∂vik
ε2ui = λ(εuiuuk)

(7)

In this case, λ is an arbitrary number and describes
a learning rate. With random initial values, these up-
date rules describe an iterative algorithm to approx-
imate the SVD and therefore to build the model for
the recommender system using the sample T .

Regularization
As described by Simon Funk a regularzation is recom-
mended to discourage uuk and vik from being large
[1]. The idea is to perform a Tikhonov regularization,
and thus penalizing the magnitude of the features. The
regularized optimization problem is defined as:

(U∗, V ∗) =argmin
U∈Rm×k

V ∈Rn×k

∑
(u,i)∈T

 ε2ui
+ γ

(K∑
k=1

uuk

)2

+

(
K∑

k=1

vik

)2

(8)

Witte Page 2 of 3

The appropriate update rules are:

uuk+ = λ(εuivik − γuuk)

vik+ = λ(εuiuuk − γvik)
(9)

The strength of regularization is described by γ.

Adding biases
Equation 2 tries to capture the interactions between
users and items that produce the different rating val-
ues. However, much of the observed variation in rating
values is due to effects associated with either users or
items, known as biases or intercepts, independent of
any interactions [4]. To deal with this, Koren et al.
describe the following first-order approximation of the
bias involved in rating rui:

bui = µ+ bi + bu (10)

The overall average rating is denoted by µ. The pa-
rameters bu and bi indicate the observed deviations
of user u and item i, respectively, from the average.
Biases extend Equation 2 as follows:

r̂ui = µ+ bu + bi +

K∑
k=1

(uuk · vik) (11)

In this case, the observed rating is broken down into its
four components: global average, item bias, user bias,
and user-item interaction. This allows each component
to explain only the part of a signal relevant to it [4].
The biased regularized optimization problem is defined
as:

(U∗, V ∗) = argmin
U∈Rm×k

V ∈Rn×k

∑
(u,i)∈T (rui − µ− bu − bi − K∑

k=1

(uuk · vik)

)2

+ γ

(K∑
k=1

uuk

)2

+

(
K∑

k=1

vik

)2

+ b2u + b2i

(12)

The appropriate update rules are:

bu+ = λ(εui − γbu)

bi+ = λ(εui − γbi)
uuk+ = λ(εuivik − γuuk)

vik+ = λ(εuiuuk − γvik)

(13)

Implementation
The implementation of the presented recommender
system was build after the model of Surprise (1). This
python package was programmed by Nicolas Hug and
is a Python scikit for recommender systems. The al-
gorithm presented in this report uses the biased and
reularized update rules described above. As postulated
by Simon Funk choosing a fixed number of epochs for
the gradient descent results in the best overall perfor-
mance [1].

Initialization:

The learning rate λ is set to 0.005 and the regulariza-
tion term γ to 0.001. The user factors uuk and the item
factors vik are both initalized with a standard normal
distribution (mean = 0; standard deviation = 1). The
user biases bu and the item biases bi are all set to
zero. The approximation of the SVD is computed in
20 epochs with K = 150 factors.

Fit:

In every epoch, every presented rating is used once
to improve the model. First the error is computed as
described above. Subsequently this error is used to up-
date all parameters after the rules in equation 13. uuk
and vik are updated for all K factors.

Prediction:

Equation 11 is applied, in order to predict ratings for
given users and given items. If either the item or the
user are not represented in U or V , the dot product is
ignored. Moreover, the summand bu is deleted, if the
user is unknown and bi, if the item is unknown. Addi-
tionaly a rounding to a precision of 0.1 is performed.

Analysis
In order to verify the algorithm, a dataset containing
461806 ratings was applied (ratings from 0 to 4). With
this dataset a 5-fold cross validation was conducted.
The result is presented in table 1.

Table 1 Results of 5-fold cross-validation
(MAE: mean absolute error; time in seconds)

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean Std

RMSE 0.507 0.510 0.510 0.511 0.512 0.510 0.0017
MAE 0.293 0.295 0.295 0.293 0.295 0.294 0.0008
Fit time 18.801 18.623 17.771 21.286 21.492 19.595 1.5073
Test time 0.680 0.600 0.610 0.710 0.640 0.648 0.0417

(1)http://www.surpriselib.com

Witte Page 3 of 3

Conclusion
The results demonstrate that SVD is a adequate choice
for recommender systems. The use of a gradient de-
scent algorithm leads to an efficient and fast imple-
mentation. Even if the number of epochs is fixed, the
cross validation showed a reproducible fast conver-
gence of the algorithm. One of the major drawbacks
of the presented method is the missing online learn-
ing functionality. Once computed, the model is static.
As described by Matthew Brand there are various dif-
ferent approaches to include updating in regularized
matrix factorization models [5]. Since for real-world
applications dynamic updating a model is one of the
most important tasks, this shoud be included in future
works. Certainly there are also various other possible
extensions.

The presented parameter values were chosen with
reference of Simon Funk [1] and Nicolas Hug [6]. They
should be adapted by testing different values to im-
prove the results.

In conclusion, SVD is a proper method to build a
recommender system. Compared to other algorithms
the presented implementation is short and plain, but
leads to a very good result.

References
1. Simon Funk. Netflix update: Try this at home. URL

http://sifter.org/~simon/journal/20061211.html.

2. Gábor Takács, István Pilászy, Bottyán Németh, and Domonkos Tikk.

Scalable collaborative filtering approaches for large recommender

systems. Journal of machine learning research, 10(Mar):623–656, 2009.

3. Adam Wagman. Netflix svd derivation. URL

http://sifter.org/%7Esimon/journal/20070815.html.

4. Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization

techniques for recommender systems. Computer, (8):30–37, 2009. ISSN

0018-9162.

5. Matthew Brand. Fast online svd revisions for lightweight recommender

systems. Society for Industrial and Applied Mathematics, 2003.

6. Nicolas Hug. Surprise documentation, 2015. URL

https://surprise.readthedocs.io/en/stable/#.

